1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488
use std::{cmp::Ordering, mem, ops::{Index, IndexMut}};
use num_traits::Zero;
use crate::{get_bounds, mmheap::MmHeap, KdPoint, KdRegion, WalkDecision};
/// Represents an inner / outer limit for a query within the tree ([`KdTree::k_closest`]).
/// See [`QueryOptions`] for more info
pub enum QueryBound<'a, R: KdRegion> {
SqDist(<R::Point as KdPoint>::Distance),
Region(&'a R),
None
}
/// Fine grained control over a query within the tree ([`KdTree::k_closest`]).
pub struct QueryOptions<'a, R: KdRegion> {
/// Points within this bound will be EXCLUDED from the query result.
/// Points ON the inner boundary will also be EXCLUDED (ie the excluded region is a closed set).
/// Useful to exclude points that are "too close" to the query point,
/// for example when iteratively increasing a sampling radius in a shortest path algorithm
/// or some other situation where the number of k_closest points needed is not know a prior.
/// For `QueryBound::SqDist(d)`, this means points whose sqdist from the query point is <= d will be excluded.
/// Since the query point itself is included by default if it is in the tree, passing `QueryBound::SqDist(Distance::zero())`
/// here can be used to exclude it.
/// For `QueryBound::Region(&r)`, this means points within `r` (where `r.min_sqdist` is `Distance::zero()`) will excluded.
/// NB this cannot be conservative like an unbounded search.
/// That is, if `R::min_sqdist` can be an underestimate, then `QueryBound::Region` should not be used.
/// For `QueryBound::None`, no points will be excluded for being "too close" to the query point.
pub inner_bound: QueryBound<'a, R>,
/// Points outside this bound will be EXCLUDED from the query result.
/// Points ON the outer boundary will be INCLUDED (ie the excluded region is an open set).
/// This makes the overall included region a half open set, excluding the inner bound but including
/// the outer bound. This is to make it easy to have successive queries cover additional area without duplicate results.
/// For `QueryBound::SqDist(d)`, points whose sqdist from the query point is > d will be excluded.
/// For `QueryBount::Region(&r)`, points outside `r` (where `r.min_sqdist` is not `Distance::zero()`) will be excluded.
/// Unlike the inner bound, this will work correctly with a conservative `R::min_sqdist` (ie if min_sqdist is an underestimate
/// it can only cause the result to include extra points, not miss points that should be included).
/// For `QueryBound::None`, no points will be excluded for being "too far" from the query point.
pub outer_bound: QueryBound<'a, R>,
/// If false, if multiple points are tied for being the kth closest, which one will be returned is arbitrary,
/// but exactly k points will be returned.
/// If true, if multiple points are tied for being the kth closest, all of them will be returned,
/// and more than k points will be returned in this case.
/// Setting this to true is necessary to correctly call [`KdTree::k_closest`] with an iteratively increasing sampling
/// radius.
pub keep_ties: bool
}
impl<'a, R: KdRegion> QueryOptions<'a, R> {
/// Default `QueryOptions` to have the included region be the entire tree,
/// and return all points which are tied for being the kth-closest
pub const ALL_KEEP_TIES: Self = Self{inner_bound: QueryBound::None, outer_bound: QueryBound::None, keep_ties: true};
/// Default `QueryOptions` to have the included region be the entire tree,
/// and arbitrarily break ties for the kth-closest point so no more than k points are ever returned.
pub const ALL_NO_TIES: Self = Self{inner_bound: QueryBound::None, outer_bound: QueryBound::None, keep_ties: false};
/// Returns true if the included region contains the point `pt`, where `point` is the center of the query,
/// or false if `pt` is in the excluded region.
pub fn contains(&self, point: &R::Point, pt: &R::Point) -> bool {
match &self.outer_bound {
QueryBound::SqDist(max_sqdist) => if point.sqdist(pt) > *max_sqdist { return false },
QueryBound::Region(r) => if r.min_sqdist(pt) > <R::Point as KdPoint>::Distance::zero() { return false },
QueryBound::None => ()
}
match &self.inner_bound {
QueryBound::SqDist(lb_sqdist) => point.sqdist(pt) > *lb_sqdist,
QueryBound::Region(r) => r.min_sqdist(pt) > <R::Point as KdPoint>::Distance::zero(),
QueryBound::None => true
}
}
/// Returns true if the included region might overlap with `bounds` and
/// might contain additional points within `max_sqdist` of the center of the query, `point`.
/// When some of the required functions of `<R as KdRegion>` are implemented conservatively,
/// this function will return true in cases where the query region and `bounds` can't
/// actually contain any additional points in the result set.
/// However, when this function returns false, the query region will always be disjoint from `bounds`,
/// UNLESS `self.inner_bound` is not `QueryBound::None` and a conservative implementation is used for [`KdRegion`].
pub fn might_overlap(&self, point: &R::Point, max_sqdist: Option<&<R::Point as KdPoint>::Distance>, bounds: &R) -> bool {
if let Some(d) = max_sqdist {
match bounds.min_sqdist(point).cmp(d) {
Ordering::Greater => return false,
Ordering::Equal => if !self.keep_ties { return false },
Ordering::Less => ()
}
}
match &self.outer_bound {
QueryBound::SqDist(outer_sqdist) => if bounds.min_sqdist(point) > *outer_sqdist { return false },
QueryBound::Region(r) => if !r.might_overlap(bounds) { return false },
QueryBound::None => ()
}
match &self.inner_bound {
QueryBound::SqDist(inner_sqdist) => !bounds.max_sqdist(point).is_some_and(|d|d <= *inner_sqdist),
QueryBound::Region(r) => !r.is_superset(bounds),
QueryBound::None => true
}
}
}
/// A KD tree represents a collection of points in space, with the ability to answer distance related queries, mainly:
/// - What are the k closest points to a given point? (The first k points in the tree, ordered by increasing squared
/// distance from the given point, including the given point if it is in the tree). (Sometimes called a nearest
/// neighbors query)
/// - What are all the points within a distance d of a given point? (All points whose squared distance from a given
/// point is at most d^2). (Sometimes called a ball query)
/// - What are all the points within a given region? (Sometimes called a cuboid query)
/// This implementation uses an implicit tree, meaning all points are stored in one contiguous buffer and no dereferences
/// are needed to traverse the tree. This is good for lookup performance, but unfortunately it means that adding/removing
/// points can't be done currently without rebuilding the tree.
/// Besides the three basic distance related queries, KD trees can be used to some extent to help with more complicated
/// distance related queries, like finding the closest pairs of points.
#[derive(Debug)]
pub struct KdTree<R: KdRegion, V = ()> {
pub bounds: Option<R>,
points: Box<[(R::Point, V)]>
}
impl<R: KdRegion, V> KdTree<R, V> {
/// Get the number of points in the kdtree
pub fn len(&self) -> usize {
self.points.len()
}
/// Iterate over all point, value pairs in the tree in depth first order,
/// calling a visitor function on each. The visitor function gets a const reference
/// to the point, the value, and the bounds of the subtree corresponding to the point,
/// and may return a [`WalkDecision`] to instruct the traversal to skip the
/// subtree or to stop the traversal entirely.
pub fn walk<'a>(&'a self, visitor: &mut impl FnMut(&R, &'a R::Point, &'a V) -> WalkDecision) {
let Some(bounds) = self.bounds.clone() else { return };
let mut todo = vec![(bounds, 0, self.len(), 0)];
while let Some((bounds, a, b, layer)) = todo.pop() {
let mid_idx = (a + b)/2;
// safe because a < b <= self.points.len() so mid_idx < self.points.len()
let point = &self.points[mid_idx].0;
let value = &self.points[mid_idx].1;
match visitor(&bounds, point, value) {
WalkDecision::Stop => return,
WalkDecision::SkipChildren => continue,
WalkDecision::Continue => ()
}
let (sub0, sub1) = bounds.split(point, layer);
if a < mid_idx { todo.push((sub0, a, mid_idx, layer + 1)) }
if mid_idx + 1 < b { todo.push((sub1, mid_idx + 1, b, layer + 1)) }
}
}
/// Iterate over all point, value pairs in the tree in depth first order,
/// calling a visitor function on each. The visitor function gets a mutable reference
/// to the value, but a const reference
/// to the point and the bounds of the subtree corresponding to the point,
/// and may return a [`WalkDecision`] to instruct the traversal to skip the
/// subtree or to stop the traversal entirely.
pub fn walk_mut<'a>(&'a mut self, visitor: &mut impl FnMut(&R, &'a R::Point, &mut V) -> WalkDecision) {
let Some(bounds) = self.bounds.clone() else { return };
let mut todo = vec![(bounds, 0, self.len(), 0)];
while let Some((bounds, a, b, layer)) = todo.pop() {
let mid_idx = (a + b)/2;
// safe because a < b <= self.points.len() so mid_idx < self.points.len()
let point = &self.points[mid_idx].0;
let value = &mut self.points[mid_idx].1;
match visitor(&bounds, point, value) {
WalkDecision::Stop => return,
WalkDecision::SkipChildren => continue,
WalkDecision::Continue => ()
}
let (sub0, sub1) = bounds.split(point, layer);
if a < mid_idx { todo.push((sub0, a, mid_idx, layer + 1)) }
if mid_idx + 1 < b { todo.push((sub1, mid_idx + 1, b, layer + 1)) }
}
}
/// Return the k points in the tree which are the closest to a given point.
/// Behavior can be fine-tuned using `cfg`:
/// - Can restrict the result set to only include points within a certain sqdist of the query point
/// or withn a certain region, as well as to exclude points within another smaller sqdist or subregion.
/// - Can specify how any points tied for kth closest should be handled (keep all or keep one arbitrarily).
/// If there are fewer than k points in the tree, returns all the points.
/// If k is 0, returns an empty minmax heap without looking at the tree
pub fn k_closest<'a>(&'a self, point: &R::Point, k: usize, cfg: QueryOptions<'a, R>) -> MmHeap<(&'a R::Point, &'a V)> {
let mut res = MmHeap::new();
if k == 0 { return res }
let mut tied_points = Vec::new();
let mut max_sqdist = if let QueryBound::SqDist(max_sqdist) = &cfg.outer_bound { Some(max_sqdist.clone()) } else { None };
let cmp_fn = &|&(a, _): &_, &(b, _): &_|point.sqdist(a).cmp(&point.sqdist(b));
self.walk(&mut |bounds, pt, v|{
if cfg.contains(point, pt) {
if res.len() + tied_points.len() < k {
res.push_by((pt, v), cmp_fn);
} else if !cfg.keep_ties {
max_sqdist = Some(point.sqdist(res.pushpop_max_by((pt, v), cmp_fn).0))
} else {
if max_sqdist.is_none() {
max_sqdist = Some(point.sqdist(res.peek_max_by(cmp_fn).unwrap().0))
}
match point.sqdist(pt).cmp(max_sqdist.as_ref().unwrap()) {
Ordering::Greater => (),
Ordering::Equal => tied_points.push((pt, v)),
Ordering::Less => {
res.push_by((pt, v), cmp_fn);
if res.len() >= k {
tied_points.clear();
tied_points.push(res.pop_max_by(cmp_fn).unwrap());
max_sqdist = Some(point.sqdist(tied_points[0].0));
while res.peek_max_by(cmp_fn).is_some_and(
|&(p, _)|point.sqdist(p) == *max_sqdist.as_ref().unwrap()
) {
tied_points.push(res.pop_max_by(cmp_fn).unwrap())
}
}
}
}
}
} else if !cfg.might_overlap(point, max_sqdist.as_ref(), bounds) {
return WalkDecision::SkipChildren;
}
WalkDecision::Continue
});
res.extend_by(tied_points, cmp_fn);
res
}
/// Borrowing iterator over only references to points.
/// The order of the result is arbitrary, but all points will be visited exactly once.
pub fn iter_points(&self) -> impl Iterator<Item=&R::Point> + '_ {
self.into_iter().map(|(p,_)|p)
}
/// Consuming iterator over only points, which are moved out of self.
/// The order of the result is arbitrarily, but all points will be visited exactly once.
pub fn into_points(self) -> impl Iterator<Item=R::Point> {
self.into_iter().map(|(p,_)|p)
}
/// Borrowing iterator over only references to values.
/// The order of the result is arbitrary, but the value for each point will be visited exactly once.
pub fn iter_values(&self) -> impl Iterator<Item=&V> + '_ {
self.into_iter().map(|(_,v)|v)
}
/// Mutable borrowing iterator over only references to values.
/// The order of the result is arbitrary, but the value for each point will be visited exactly once.
/// This is a splitting borrow, so it is safe to store a reference to some value and mutate it even
/// after subsequent values have been visited.
pub fn mut_values(&mut self) -> impl Iterator<Item=&mut V> + '_ {
self.into_iter().map(|(_,v)|v)
}
/// Consuming iterator over only values, which are moved out of self.
/// The order of the result is arbitrary, but the value for each point will be visited exactly once.
pub fn into_values(self) -> impl Iterator<Item=V> {
self.into_iter().map(|(_,v)|v)
}
/// Return a reference to the value for some point in the tree, or None if the point is not found
pub fn get(&self, point: &R::Point) -> Option<&V> {
self.points.get(self.find(point)).map(|(_,v)|v)
}
/// Return a reference to a point in the tree and the corresponding value, or None if the point is not found
pub fn get_point_value(&self, point: &R::Point) -> Option<(&R::Point, &V)> {
self.points.get(self.find(point)).map(|(p,v)|(p,v))
}
/// Return true if the tree contains some point or false otherwise
pub fn contains_point(&self, point: &R::Point) -> bool {
self.find(point) != self.len()
}
/// Return a mutable reference to the value for some point in the tree, or None if the point is not found
pub fn get_mut(&mut self, point: &R::Point) -> Option<&mut V> {
self.points.get_mut(self.find(point)).map(|(_,v)|v)
}
/// Convert a const reference to a point in the tree into an internal index.
/// This function is unsafe because it can't be used productively without
/// [`Self::launder_idx_mut`]. `ent` MUST be a reference to one of the points actually stored in
/// the tree, NOT an identical point elsewhere, or this function invokes undefined behavior.
pub unsafe fn launder_point_ref(&self, ent: &R::Point) -> usize {
(ent as *const R::Point as *const (R::Point, V))
.offset_from(self.points.as_ptr()) as usize
}
/// Convert a const reference to a value in the tree into an internal index.
/// This function is unsafe because it can't be used productively without
/// [`Self::launder_idx_point`]. `ent` MUST be a reference to one of the values actually stored in
/// the tree, NOT an identical point elsewhere, or this function invokes undefined behavior.
pub unsafe fn launder_value_ref(&self, ent: &V) -> usize {
((ent as *const V).byte_sub(mem::offset_of!((R::Point, V), 1))
as *const (R::Point, V)
).offset_from(self.points.as_ptr()) as usize
}
/// Convert an internal index into a reference to a point in the tree.
/// The internal index must have come from [`Self::launder_point_ref`] or [`Self::launder_value_ref`]
/// called on the same tree.
/// The intent of this function is to allow finding the points corresponding to values
/// given a value reference, like for example if some of the values are made into
/// an intrusive linked data structure.
pub unsafe fn launder_idx_point(&self, idx: usize) -> &R::Point {
&self.points[idx].0
}
/// Convert an internal index into a mutable reference to a value in the tree.
/// The internal index must have come from [`Self::launder_point_ref`] or [`Self::launder_value_ref`]
/// called on the same tree.
/// The intent of this function is to allow mutating the values of the points in the
/// result set of `k_closest` etc.
pub unsafe fn launder_idx_mut(&mut self, idx: usize) -> &mut V {
&mut self.points[idx].1
}
fn find(&self, point: &R::Point) -> usize {
self.find_r(point, 0, self.len(), 0)
}
fn find_r(&self, point: &R::Point, mut a: usize, mut b: usize, mut layer: usize) -> usize {
while a < b {
let mid_idx = (a + b)/2;
let p = &self.points[mid_idx].0;
match point.cmp(p, layer) {
Ordering::Less => b = mid_idx,
Ordering::Greater => a = mid_idx + 1,
Ordering::Equal => {
if point == p { return mid_idx }
a = self.find_r(point, a, mid_idx, layer + 1);
if a != self.len() { return a }
a = mid_idx + 1
}
}
layer += 1
}
self.len()
}
fn ify(&mut self) {
self.ify_r(0, self.points.len(), 0)
}
fn ify_r(&mut self, a: usize, mut b: usize, mut layer: usize) {
while a < b {
let med_idx = (a + b)/2;
self.points[a..b].select_nth_unstable_by(med_idx - a, |(p, _), (q, _)| p.cmp(q, layer)); // rust picks up Ord::cmp if we don't handhold it
layer += 1;
self.ify_r(med_idx + 1, b, layer);
b = med_idx;
}
}
#[cfg(test)]
fn check_layer(&self, a: usize, b: usize, layer: usize) -> bool {
if b > self.points.len() || a > b {
return false
} if a == b {
return true
}
let mid_idx = (a + b)/2;
let m = &self.points[mid_idx].0;
for (e, _) in self.points.get(a..mid_idx).unwrap_or(&[]) {
if KdPoint::cmp(e, m, layer) == Ordering::Greater {
return false;
}
}
for (e, _) in self.points.get(mid_idx+1..b).unwrap_or(&[]) {
if KdPoint::cmp(e, m, layer) == Ordering::Less {
return false;
}
}
true
}
#[cfg(test)]
fn check_tree_r(&self, a: usize, mut b: usize, mut layer: usize) -> bool {
while b > a {
if !self.check_layer(a, b, layer) {
return false;
}
let mid_idx = (a + b)/2;
layer += 1;
if !self.check_tree_r(mid_idx + 1, b, layer) {
return false;
}
b = mid_idx;
}
true
}
#[cfg(test)]
pub(crate) fn check_tree(&self) -> bool {
self.check_tree_r(0, self.points.len(), 0)
}
#[cfg(test)]
pub(crate) fn k_closest_naive<'a>(&'a self, point: &R::Point, k: usize) -> Vec<(&'a R::Point, &'a V)> {
let mut res = MmHeap::new();
let cmp_fn = &|&(a, _): &_, &(b, _): &_|point.sqdist(a).cmp(&point.sqdist(b));
(&self).into_iter().for_each(&mut |(p, v)|{
if res.len() < k {
res.push_by((p, v), cmp_fn)
} else {
res.pushpop_max_by((p, v), cmp_fn);
}
});
res.into()
}
}
pub struct Iter<'a, P: KdPoint, V> {
buf: &'a [(P, V)],
idx: usize
}
impl<'a, P: KdPoint, V> Iterator for Iter<'a, P, V> {
type Item = (&'a P, &'a V);
fn next(&mut self) -> Option<Self::Item> {
self.buf.get(self.idx).inspect(|_|self.idx += 1).map(|(a,b)|(a,b))
}
}
pub struct IterMut<'a, P: KdPoint, V> {
tail: &'a mut [(P, V)],
}
impl<'a, P, V> Iterator for IterMut<'a, P, V>
where P: KdPoint {
type Item = (&'a P, &'a mut V);
fn next(&mut self) -> Option<Self::Item> {
let Some(([(a, b)], tail)) = mem::take(&mut self.tail).split_at_mut_checked(1) else { return None };
self.tail = tail;
Some((a, b))
}
}
impl<'a, R: KdRegion, V> IntoIterator for &'a KdTree<R, V> {
type Item = (&'a R::Point, &'a V);
type IntoIter = Iter<'a, R::Point, V>;
fn into_iter(self) -> Self::IntoIter {
Iter{buf: &self.points, idx: 0}
}
}
impl<'a, R: KdRegion, V> IntoIterator for &'a mut KdTree<R, V> {
type Item = (&'a R::Point, &'a mut V);
type IntoIter = IterMut<'a, R::Point, V>;
fn into_iter(self) -> Self::IntoIter {
IterMut{tail: &mut self.points}
}
}
impl<R: KdRegion, V> IntoIterator for KdTree<R, V> {
type Item = (R::Point, V);
type IntoIter = <Vec<(R::Point, V)> as IntoIterator>::IntoIter;
fn into_iter(self) -> Self::IntoIter {
self.points.into_vec().into_iter()
}
}
impl<R: KdRegion, V, const N: usize> From<[(R::Point, V); N]> for KdTree<R, V> {
fn from(ents: [(R::Point, V); N]) -> Self {
let bounds = get_bounds((&ents).into_iter().map(|(p,_)|p));
let points = ents.into_iter().collect();
let mut res = Self{points, bounds};
res.ify();
res
}
}
impl<R: KdRegion, V> FromIterator<(R::Point, V)> for KdTree<R, V> {
fn from_iter<T: IntoIterator<Item = (R::Point, V)>>(iter: T) -> Self {
let points: Box<[_]> = iter.into_iter().collect();
let bounds = get_bounds((&points).into_iter().map(|(p,_)|p));
let mut res = Self{points, bounds};
res.ify();
res
}
}
impl<R: KdRegion, V> Index<&R::Point> for KdTree<R, V> {
type Output = V;
fn index(&self, point: &R::Point) -> &V {
self.get(point).unwrap()
}
}
impl<R: KdRegion, V> IndexMut<&R::Point> for KdTree<R, V> {
fn index_mut(&mut self, point: &R::Point) -> &mut Self::Output {
self.get_mut(point).unwrap()
}
}