1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
//! A fibonacci heap is a type of data structure optimized for use as a priority queue.
//! It is commonly useful in pathfinding algorithms like Dijkstra's and A*.
//! 
//! Below is a very in depth comparison and analysis of various types of heaps,
//! skip to [`FibHeap`] if you only want to know how to use this library.
//! Reading the tests is also a great way to find examples.  Building code as tests will
//! help debug fibheap code in particular because additional checks are performed under `cfg(test)`
//! that will `abort` if the heap breaks (ie because a duplicate node was added, a node was removed
//! that wasn't in the heap, or there is a bug in the library).
//! 
//! Depending on your needs, [`crate::mmheap::MmHeap`] may be more useful to you, or
//! Rust's builtin [`std::collections::BinaryHeap`].  Both of these are binary heaps,
//! but the former offers fast access to both the minimum and the maximum.
//! 
//! # Comparison of Heaps
//! ## Asymptotic Time
//!|            | Binary | Pairing | Fibonacci | Bucket |
//!|------------|--------|---------|-----------|--------|
//!|find-min    | O(1)   | O(1)    | O(1)      | O(1)   |
//!|extract-min | O(logn)| O(logn) | O(logn)   | O(1)   |
//!|insert      | O(logn)| O(1)    | O(1)      | O(1)   |
//!|decrease-key| O(logn)| O(logn) | O(1)      | O(1)   |
//!|increase-key| O(logn)| O(logn) | O(logn)   | O(1)   |
//!|meld        | O(n)   | O(1)    | O(1)      | O(n)   |
//! Not all of these operations are directly supported.  In Fibonacci heaps, `increase-key`
//! must be implemented by removing and re-inserting an element.  In binary heaps,
//! decrease/increase key can be difficult to implement because the elements exist in the heap's
//! internal buffer and there isn't a direct way to get a reference/index to them.
//! Also in binary heaps, meld is not directly supported and must be implemented by extending
//! the internal buffer of one heap by that of another and re-heapifying.
//! Bucket queues are extremely good when relevant, but they only support a fixed number of
//! priorities, literally having a bucket for each priority, so they are not always suitable.
//! 
//! ## Linked vs Unlinked Data Structures
//! Asymptotic time complexity is not the whole story.  Fibonacci heaps and pairing heaps are linked data
//! structures, so links to adjacent nodes are stored as pointers, whereas binary heaps
//! have such a simple, rigid structure that they can be stored directly in an array
//! (eg the children of a node at index i will be at indices 2i + 1 and 2i + 2).
//! Linked data structures can still be stored in an array, but the offsets between nodes
//! are not consistent and so generally pointers are used, which can introduce overhead in several
//! ways.  Linked data structures often underperform relative to "rigid" data structures
//! even though their asymptotic complexity is better.  And even among linked data structures,
//! Fibonacci heaps are considered complex and may perform worse than pairing heaps.
//! 
//! ## Amortized Running Time
//! The runtimes of Fibonacci heaps are amortized using potential, which means if the
//! number of other calls is much much greater than the number of extract-min calls,
//! the extract-min calls may take much longer because they are picking up more work.
//! This doesn't happen in most use cases since generally a large part of the heap will be
//! drained in algorithms like heapsort, A*, etc.  When it's not the case that a large part
//! of the heap will be drained, a minmax heap can often be a good choice since it allows
//! dropping entries that will never be used efficiently.  In particular, if the number of
//! entries that will be extracted from the heap is constant and small, a minmax heap will
//! probably be best.  If the number of entries that will be extracted is proportional to
//! the number inserted and/or large, a fibonacci heap may be the best.
//! 
//! ## Explanation of Algorithms
//! There are two operations (extract-min and decrease-key) that are central to Fibonacci heaps,
//! and all other operations are trivial.
//! A Fibonacci heap consists of a collection of subheaps, each of which is a tree where
//! nodes can have any number of children.  This is implemented by giving each node 4 pointers:
//! its parent, its first child, its next sibling, and its previous sibling.  For the subheap roots,
//! their parent is null and their next/previous siblings are instead other roots.
//! Each node also stores its degree (number of chilren) and whether or not it has had a child removed.
//! 
//! The heap itself stores a pointer to the minimal root, and the number of elements in the heap.
//! 
//! This structure is restricted by a few invariants.  First, each node is less than or equal to
//! all of its children according to the heap comparison function.  Second, the total size of a
//! subheap whose root has k children is at least F_(k+2), where F_k is the kth Fibonacci number,
//! with F_1 = F_2 = 1, F_3 = 2, F_4 = 3, etc.
//! 
//! When extract-min is called, first we remove the minimal root.
//! Then we iterate over the roots of all other subheaps, plus the children of the removed root,
//! placing them into an array with O(logn) elements.
//! Each such node goes into the index in the array corresponding to its degree.  If there is already a subheap there,
//! we instead remove that subheap, merge it with the current one, and keep going.  When we merge the subheaps,
//! the one with the larger root is added as a child of the one with the smaller root, so the degree of the latter goes
//! up and then we try to put it in the next corresponding index in the array, repeating until we reach a degree that
//! isn't in the array yet.
//! 
//! At the end, this gives us an array of subheaps with distinct degrees.
//! We re-link these into a double circularly linked list, and update the minimal root pointer to point to the minimal one.
//! 
//! If all subheaps obey the `size >= F_(degree + 2)` invariant before `extract-min`, they will also obey it after.
//! 
//! If there are two or fewer nodes in the heap before we extract-min, we can optimize by not merging subheaps and just
//! setting the new minimal root to either the one remaining node or null.
//! 
//! When decrease-key is called, if the key is still greater than or equal to the parent's key, or the node is
//! a root node and the key is still greater than or equal to the minimal root, or the root node is the minimal root,
//! there is nothing to be done.  If the node is a root node but not the minimal root and the key becomes
//! less than the minimal heap, update the minimal heap.
//! 
//! Finally, if the key is now less than the parent's key, remove the node from its sibling list and as a child of its parent.
//! Add it as a new subeap.  If the parent was not marked as already having a child removed, mark it as such
//! and then remove it as well, repeating for any remaining parents.  However, root nodes need not be marked as such.
//! 
//! This marking is needed to ensure that the `size >= F_(degree + 2)` invariant does not break
//! 
//! Insert and meld just require adding a new subheap with one element, and stitching together the subheap root linked lists,
//! respectively.
//! 
//! Find-min just requires inspecting the min_root pointer.
//! 
//! ## Further Reading
//! [Wikipedia](https://en.wikipedia.org/wiki/Fibonacci_heap)
//! [3b1b style video by SithDev](https://youtu.be/6JxvKfSV9Ns)
//! 
//! A very popular priority queue crate.  This crate implements priority queues using a hash table to allow key-indexed node
//! access, and builds the priority queue on top of its internal hash table.  It has a good api and is a good choice most of
//! the time.  Crater has some advantages over this crate: our fib heap allows building priority queues with any backing
//! store, eg KD trees, vectors, just putting each node in `Box`, etc; and references to nodes have generous lifetimes,
//! so storing references instead of keys is possible and makes lookup as fast as possible.  However, unless you need these
//! features, this crate is a better choice than Crater.
//! [priority-queue](https://crates.io/crates/priority-queue)

use std::{cell::UnsafeCell, cmp::Ordering, marker::PhantomData, ptr};

/// The intrusive struct itself that should be embedded in any types that
/// implement [`Node`].  See [`FibHeap`] for more information.
#[derive(Debug)]
pub struct RawNode<'a, T: Node<'a> + ?Sized> {
	prev: UnsafeCell<Option<&'a T>>,
	next: UnsafeCell<Option<&'a T>>,
	first_child: UnsafeCell<Option<&'a T>>,
	parent: UnsafeCell<Option<&'a T>>,
	has_split: UnsafeCell<bool>,
	degree: UnsafeCell<u8>
}

/// Any struct can be used as the fib heap element simply by embedding a [`RawNode`]
/// in it (or wrapping it in a struct containing a raw node) and implementing this trait.
pub trait Node<'a> {
	/// Comparison function for nodes, can just wrap Ord impl if present
	fn cmp(&'a self, other: &'a Self) -> Ordering;
	/// Get a reference to the embedded raw node.  This is used internally to traverse and bookkeep the heap.
	/// Accessing this is not thread safe as-is.  Implementors can place the raw node under a lock,
	/// but it's better to lock the entire [`FibHeap`] to avoid race conditions.
	fn get_raw(&'a self) -> &RawNode<'a, Self>;
}

struct SiblingIter<'a, T: Node<'a> + ?Sized> {
	start: Option<&'a T>,
	iter: &'a T
}

impl<'a, T: Node<'a> + ?Sized> Iterator for SiblingIter<'a, T> {
	type Item = &'a T;
	fn next(&mut self) -> Option<Self::Item> {
		self.start?;
		let res = self.iter;
		self.iter = (*unsafe { res.get_raw().next.get().as_ref() }.unwrap()).unwrap();
		if ptr::eq(self.iter, self.start.unwrap()) { self.start = None }
		Some(res)
	}
}

struct UnlinkingSiblingIter<'a, T: Node<'a> + ?Sized> {
	start: Option<&'a T>,
	iter: &'a T
}

impl<'a, T: Node<'a> + ?Sized> Iterator for UnlinkingSiblingIter<'a, T> {
	type Item = &'a T;
	fn next(&mut self) -> Option<Self::Item> {
		self.start?;
		let res = self.iter;
		let links = res.get_raw();
		self.iter = (*unsafe { links.next.get().as_ref() }.unwrap()).unwrap();
		if ptr::eq(self.iter, self.start.unwrap()) { self.start = None }
		unsafe {
			*links.next.get() = None;
			*links.prev.get() = None;
			*links.parent.get() = None;
		}
		Some(res)
	}
}

#[cfg(test)]
enum FibHeapError<'a, T: Node<'a> + ?Sized> {
	BrokenPrevLink(&'a T),
	LessThanParent(&'a T),
	BrokenParentLink(&'a T),
	WrongDegree(&'a T),
	TooSmall(&'a T),
	WrongCount
}

#[cfg(test)]
impl<'a, T: Node<'a> + ?Sized> PartialEq for FibHeapError<'a, T> {
	fn eq(&self, other: &Self) -> bool {
		use FibHeapError::*;
		match (self, other) {
			(BrokenPrevLink(a), BrokenPrevLink(b))
			| (LessThanParent(a), LessThanParent(b))
			| (BrokenParentLink(a), BrokenParentLink(b))
			| (WrongDegree(a), WrongDegree(b))
			| (TooSmall(a), TooSmall(b)) => ptr::eq(a, b),
			(WrongCount, WrongCount) => true,
			_ => false
		}
	}
}

#[cfg(test)]
impl<'a, T: Node<'a> + ?Sized> std::fmt::Debug for FibHeapError<'a, T> {
	fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
		use FibHeapError::*;
		match self {
			BrokenPrevLink(a) => write!(f, "BrokenPrevLink({})", a as *const _ as usize),
			LessThanParent(a) => write!(f, "LessThanParent({})", a as *const _ as usize),
			BrokenParentLink(a) => write!(f, "BrokenParentLink({})", a as *const _ as usize),
			WrongDegree(a) => write!(f, "WrongDegree({})", a as *const _ as usize),
			TooSmall(a) => write!(f, "TooSmall({})", a as *const _ as usize),
			WrongCount => write!(f, "WrongCount")
		}
	}
}

impl<'a, T: Node<'a> + ?Sized> Default for RawNode<'a, T> {
	fn default() -> Self {
		Self{prev: None.into(), next: None.into(), first_child: None.into(), parent: None.into(), has_split: false.into(), degree: 0.into()}
	}
}

#[cfg(test)]
fn iter_siblings<'a, T>(node: &'a T) -> SiblingIter<'a, T>
where T: Node<'a> + ?Sized {
	SiblingIter{start: Some(node), iter: node}
}

fn unlinking_siblings<'a, T>(node: &'a T) -> UnlinkingSiblingIter<'a, T>
where T: Node<'a> + ?Sized {
	UnlinkingSiblingIter{start: Some(node), iter: node}
}

fn unlinking_children<'a, T>(node: &'a T) -> UnlinkingSiblingIter<'a, T>
where T: Node<'a> + ?Sized {
	let links = node.get_raw();
	(*unsafe { links.first_child.get().as_ref() }.unwrap()).inspect(|_| unsafe {
		*links.first_child.get() = None;
		*links.degree.get() = 0
	}).map_or(UnlinkingSiblingIter{start: None, iter: node}, unlinking_siblings)
}

unsafe fn remove_root<'a, T>(node: &'a T) -> Option<&'a T>
where T: Node<'a> + ?Sized {
	let links = node.get_raw();
	let next = (*unsafe { links.next.get().as_ref() }.unwrap()).unwrap();
	let prev = (*unsafe { links.prev.get().as_ref() }.unwrap()).unwrap();
	if ptr::eq(next, prev) {
		if ptr::eq(next, node) {
			None
		} else {
			let next_links = next.get_raw();
			unsafe {
				*next_links.next.get() = Some(next);
				*next_links.prev.get() = Some(next);
				*links.next.get() = Some(node);
				*links.prev.get() = Some(node);
			}
			Some(next)
		}
	} else {
		let next_links = next.get_raw();
		let prev_links = prev.get_raw();
		unsafe {
			*next_links.prev.get() = Some(prev);
			*prev_links.next.get() = Some(next);
			*links.next.get() = Some(node);
			*links.prev.get() = Some(node);
		}
		Some(next)
	}
}

unsafe fn merge_same_deg<'a, T>(node: &'a T, other: &'a T) -> &'a T
where T: Node<'a> + ?Sized {
	// first, find which of node / other has the minimal key, breaking ties with node
	let (res_ptr, other_ptr) = if node.cmp(other).is_le() {
		(node, other)
	} else { (other, node) };
	let res_links = res_ptr.get_raw();
	let other_links = other_ptr.get_raw();
	match *res_links.degree.get() {
		0 => unsafe { // the roots both have degree zero, so there are no children to fix up
			*other_links.next.get() = Some(other_ptr);
			*other_links.prev.get() = Some(other_ptr);
			*other_links.parent.get() = Some(res_ptr);
			*res_links.first_child.get() = Some(other_ptr);
		},
		1 => unsafe { // the roots both have degree one, so res has one existing child
			let first_child = (*res_links.first_child.get()).unwrap();
			*other_links.next.get() = Some(first_child);
			*other_links.prev.get() = Some(first_child);
			let first_child_links = first_child.get_raw();
			*first_child_links.next.get() = Some(other_ptr);
			*first_child_links.prev.get() = Some(other_ptr);
			*other_links.parent.get() = Some(res_ptr);
		},
		_ => unsafe { // the roots both have degree greater than one, so res has a distinct existing first and last child
			let first_child = (*res_links.first_child.get()).unwrap();
			*other_links.next.get() = Some(first_child);
			let first_child_links = first_child.get_raw();
			let last_child = (*first_child_links.prev.get()).unwrap();
			*other_links.prev.get() = Some(last_child);
			*last_child.get_raw().next.get() = Some(other_ptr);
			*first_child_links.prev.get() = Some(other_ptr);
			*other_links.parent.get() = Some(res_ptr);
		}
	}
	*res_links.degree.get() += 1;
	res_ptr
}
#[cfg(test)]
fn check<'a, T>(node: &'a T) -> Result<usize, FibHeapError<'a, T>>
where T: Node<'a> + ?Sized {
	use FibHeapError::*;
	let mut degree = 0;
	let mut first = None;
	let mut prev = None;
	let mut count = 1;
	let (mut fib_d1, mut fib_d2) = (1, 1);
	for child in (*unsafe { node.get_raw().first_child.get().as_ref().unwrap() }).into_iter().flat_map(iter_siblings) {
		degree += 1;
		(fib_d1, fib_d2) = (fib_d2, fib_d1 + fib_d2);
		let child_links = child.get_raw();
		if child.cmp(node) == Ordering::Less {
			return Err(LessThanParent(child))
		}
		if prev.is_none() {
			first = Some(child);
		} else if !unsafe { *child_links.prev.get() }.is_some_and(|p|ptr::eq(p, prev.unwrap())) {
			Err(BrokenPrevLink(child))?
		} else if !unsafe { *child_links.parent.get() }.is_some_and(|p|ptr::eq(p, node)) {
			return Err(BrokenParentLink(child))
		}
		prev = Some(child);
		count += check(child)?;
	}
	if let Some(first_node) = first {
		let child_links = first_node.get_raw();
		if !unsafe { *child_links.prev.get() }.is_some_and(|p|ptr::eq(p, prev.unwrap())) {
			return Err(BrokenPrevLink(first_node))
		}
		// we don't need to check "prev".next because that's the termination condition of `iter_siblings`
	}
	if degree != unsafe { *node.get_raw().degree.get() } {
		Err(WrongDegree(node))
	} else if count < fib_d2 {
		Err(TooSmall(node))
	} else { Ok(count) }
}

/// A fibonacci heap is a type of data structure optimized for use as a priority queue.
/// It is commonly useful in pathfinding algorithms like Dijkstra's and A*.
/// Fib heaps have the following amortized time complexities:
/// - find-min: O(1)
/// - extract-min: O(logn)
/// - insert: O(1), compare to O(logn) in a binary heap
/// - decrease-key: O(1), compare to O(logn) in a binary heap / pairing heap
/// - meld: O(1), compare to O(n) in a binary heap
/// Extracting (or deleting) an arbitrary element is also O(logn).
/// Increase-key is not directly supported, but can be done by removing and reinserting.
/// Fib heaps will generally be a better choice than other heaps when:
/// - The number of elements extracted from the heap is proportional to the number inserted and/or large, not fixed and small
/// - The keys/priorities of elements need to be decreased frequently
/// - The keys/priorities of elements don't need to be increased frequently (also the comparison function doesn't need to be changed)
pub struct FibHeap<'a, T: Node<'a> + ?Sized, U> {
	min_root: Option<&'a T>,
	count: usize,
	container: PhantomData<&'a mut U>
}

impl<'a, T: Node<'a> + ?Sized + 'a, U> FibHeap<'a, T, U> {
	/// Create a new fibonacci heap whose backing storage will live at least as long as `_container`.
	/// Typically, if the nodes are stored in a `Vec` or a [`crate::kdtree::KdTree`] or so on,
	/// this backing container will have to remain effectively pinned for as long as the fibonacci
	/// heap exists, so that references to nodes remain valid.
	/// 
	/// Conceptually, only the lifespan of `_container` matters: by passing it in here and holding a `PhantomData`
	/// reference with the same lifespan, we force the shared reference to the container to outlive the
	/// fibonacci heap and prevent any mutable references to it from existing for that time.
	/// 
	/// Internally, [`RawNode`] uses [`UnsafeCell`] so that nodes can be mutated through shared reference.
	/// Otherwise, correctly mutating nodes is excessively complicated (requires using raw pointers throughout,
	/// and requires the backing storage to have some way to get a mutable subreference that doesn't overlap with
	/// any node so we can assume it is effectively pinned, most of the time this would be a mutable reference to
	/// an empty slice).
	pub fn new(_container: &'a U) -> Self {
		Self{min_root: None, count: 0, container: PhantomData}
	}
	/// Get the minimal element if it exists, returning a reference to it without removing it.
	/// It is safe to decrease the key of the result, but not to increase it
	/// if doing so could cause it to no longer be minimal (the key probably lives behind an [`UnsafeCell`])
	pub fn peek_min(&self) -> Option<&'a T> {
		self.min_root
	}
	/// Get and remove the minimal element if it exists, returning a reference to it.
	/// The key of the result may be freely modified
	pub fn pop_min(&mut self) -> Option<&'a T> {
		if self.count <= 1 {
			let res = self.min_root?;
			self.count = 0;
			self.min_root = None;
			#[cfg(test)]{
				assert!(self.check().is_ok())
			}
			return Some(res)
		}
		// Calculate the ceiling of the base 2 log of self.count, then multiply by the reciprocal of the base 2 log of the golden ratio
		let max_degree = ((((self.count - 1).ilog2() + 1) as f64)*1.4404200904125567).ceil() as usize;
		let mut roots = vec![None; max_degree + 1];
		let min_root = self.min_root.unwrap();
		let other_roots = unsafe { remove_root(min_root) };
		// iterate over all roots besides min_root (other_roots.flat_map(RawNode::unlinking_siblings)),
		// followed by all children of min_root.
		// unlinking_siblings/children are "destructive" and will automatically remove all sibling links.
		let iter = other_roots.into_iter().flat_map(unlinking_siblings)
			.chain(unlinking_children(min_root));
		for mut root_ptr in iter {
			loop { // repeatedly try to insert the root into the array of roots, merging it with the root with the same degree until it has unique degree
				let degree = unsafe { *root_ptr.get_raw().degree.get() } as usize;
				match roots[degree].take() {
					None => {
						roots[degree] = Some(root_ptr);
						break
					},
					Some(other_ptr) => root_ptr = unsafe { merge_same_deg(root_ptr, other_ptr) }
				}
			}
		}
		let mut iter = roots.into_iter().flatten();
		let [first_ptr, mut min_ptr, mut last_ptr] = [iter.next().unwrap(); 3];
		for root_ptr in iter {
			let last_links = last_ptr.get_raw();
			let curr_links = root_ptr.get_raw();
			unsafe {
				*last_links.next.get() = Some(root_ptr);
				*curr_links.prev.get() = Some(last_ptr);
			}
			if root_ptr.cmp(min_ptr).is_le() {
				min_ptr = root_ptr;
			}
			last_ptr = root_ptr;
		}
		if ptr::eq(first_ptr, last_ptr) {
			let first_links = first_ptr.get_raw();
			unsafe {
				*first_links.prev.get() = Some(first_ptr);
				*first_links.next.get() = Some(first_ptr);
			}
		} else { unsafe {
			*first_ptr.get_raw().prev.get() = Some(last_ptr);
			*last_ptr.get_raw().next.get() = Some(first_ptr);
		}}
		self.count -= 1;
		self.min_root = Some(min_ptr);
		#[cfg(test)]{
			assert_eq!(self.check(), Ok(()));
		}
		Some(min_root)
	}
	/// Add a node to the heap.  This is unsafe because the node must not already be in
	/// the heap, nor in a different heap.  It is not strictly required for all nodes
	/// to have the same backing store as long as the borrow checker confirms they outlive
	/// the heap, but most of the time all references will be to elements of the backing store.
	pub unsafe fn push(&mut self, ent: &'a T) {
		unsafe { self.reattach(ent) }
		self.count += 1;
		#[cfg(test)]{
			assert_eq!(self.check(), Ok(()))
		}
	}
	/// Called immediately AFTER a node's key is decreased, to ensure that the heap invariants
	/// are maintained.  This is unsafe because the node must be an element of the heap.
	pub unsafe fn decrease_key(&mut self, ent: &'a T) {
		if unsafe { *ent.get_raw().parent.get()}.is_some_and(|p|ent.cmp(p) == Ordering::Less) {
			self.separate_node(ent)
		}
	}
	/// Remove a node from the heap by reference.  Since the heap is intrusive and does not own its
	/// nodes, nothing is returned because the caller already has a reference to the removed node.
	/// This is unsafe because the node must be an element of the heap.
	pub unsafe fn remove(&mut self, node: &'a T) {
		self.separate_node(node);
		self.min_root = Some(node);
		self.pop_min();
	}
	unsafe fn reattach(&mut self, node: &'a T) {
		match self.count {
			0 => {
				self.min_root = Some(node);
				let links = node.get_raw();
				*links.next.get() = Some(node);
				*links.prev.get() = Some(node);
			},
			1 => {
				let root_links = self.min_root.unwrap().get_raw();
				*root_links.next.get() = Some(node);
				*root_links.prev.get() = Some(node);
				let node_links = node.get_raw();
				*node_links.next.get() = self.min_root;
				*node_links.prev.get() = self.min_root;
				if node.cmp(self.min_root.unwrap()).is_le() {
					self.min_root = Some(node)
				}
			},
			_ => {
				let root_links = self.min_root.unwrap().get_raw();
				let next_root = (*root_links.next.get()).unwrap();
				let next_links = next_root.get_raw();
				let node_links = node.get_raw();
				*node_links.prev.get() = self.min_root;
				*next_links.prev.get() = Some(node);
				*node_links.next.get() = Some(next_root);
				*root_links.next.get() = Some(node);
				if node.cmp(self.min_root.unwrap()).is_le() {
					self.min_root = Some(node)
				}
			}
		}
	}
	unsafe fn separate_node(&mut self, mut node: &'a T) {
		loop {
			let Some(parent) = *node.get_raw().parent.get() else { return };
			let next = remove_root(node);
			let parent_links = parent.get_raw();
			if (*parent_links.first_child.get()).is_some_and(|f|ptr::eq(node, f)) {
				*parent_links.first_child.get() = next;
			}
			*node.get_raw().parent.get() = None;
			self.reattach(node);
			*parent_links.degree.get() -= 1;
			if !*parent_links.has_split.get() {
				if (*parent_links.parent.get()).is_none() {
					*parent_links.has_split.get() = true;
				}
				break
			}
			*parent_links.has_split.get() = false;
			node = parent;
		}
		#[cfg(test)]{
			assert!(self.check().is_ok())
		}
	}
	#[cfg(test)]
	fn check(&self) -> Result<(), FibHeapError<'a, T>> {
		use FibHeapError::*;
		if (self.count == 0) != self.min_root.is_none() {
			return Err(WrongCount)
		} if self.count == 0 {
			return Ok(())
		}
		#[cfg(feature = "stress_tests")]{
			return Ok(())
		}
		let root = self.min_root.unwrap();
		let mut first = None;
		let mut prev: Option<&T> = None;
		let mut count = 0;
		for child in iter_siblings(root) {
			if child.cmp(root) == Ordering::Less {
				return Err(LessThanParent(child))
			}
			let child_links = child.get_raw();
			if prev.is_none() {
				first = Some(child);
			} else if !unsafe { *child_links.prev.get() }.is_some_and(|p|ptr::eq(p, prev.unwrap())) {
				Err(BrokenPrevLink(child))?
			} else if unsafe { *child_links.parent.get() }.is_some() {
				return Err(FibHeapError::BrokenParentLink(child))
			}
			prev = Some(child);
			count += check(child)?;
		}
		if let Some(child) = first {
			let child_links = child.get_raw();
			if !unsafe { *child_links.prev.get() }.is_some_and(|p|ptr::eq(p, prev.unwrap())) {
				return Err(FibHeapError::BrokenPrevLink(child))
			}
			// we don't need to check "prev".next because that's the termination condition of `iter_siblings`
		}
		if count != self.count {
			Err(FibHeapError::WrongCount)
		} else { Ok(()) }
	} 
}

#[cfg(test)]
mod tests {
    use std::{cell::UnsafeCell, cmp::Ordering, fs, ops::Deref};

    use num_traits::Euclid;

    use super::{FibHeap, Node, RawNode};

	struct GenNode<'a> {
		multiple: UnsafeCell<u64>,
		prime: UnsafeCell<u64>,
		_node: RawNode<'a, Self>
	}

	impl<'a> Node<'a> for GenNode<'a> {
		fn cmp(&'a self, other: &'a Self) -> Ordering {
			unsafe { (*self.multiple.get()).cmp(other.multiple.get().as_ref().unwrap()) }
		}
		fn get_raw(&'a self) -> &RawNode<Self> {
			&self._node
		}
	}

	#[test]
	fn prime_fheap() {
		let mut prime_sum = 0;
		let scapegoat = Box::new(());
		let mut ref_holder = Vec::new();
		let mut my_heap = FibHeap::new(&scapegoat);
		let ub = 100;
		for n in 2..ub {
			loop {
				if !my_heap.peek_min().is_some_and(|g: &GenNode|unsafe { *g.multiple.get() } < n ) {
					break
				}
				let node = my_heap.pop_min().unwrap();
				unsafe {
					*node.multiple.get() += *node.prime.get();
					if *node.multiple.get() < ub {
						my_heap.push(node)
					}
				}
			}
			if !my_heap.peek_min().is_some_and(|g|unsafe { *g.multiple.get() } == n) {
				prime_sum += n;
				if n*n < ub {
					let node = Box::new(GenNode{multiple: (n*n).into(), prime: n.into(), _node: Default::default()});
					ref_holder.push(node);
					unsafe {
						let last_ref = (ref_holder.last().unwrap().deref() as *const GenNode).as_ref().unwrap();
						my_heap.push(last_ref)
					}
				}
			}
		}
		eprintln!("Sum of primes < {} = {}", ub, prime_sum);
		assert_eq!(prime_sum, 1060);
	}

	struct GridNode<'a> {
		cost: u64,
		h: u64,
		min_dist: UnsafeCell<u64>,
		visited: UnsafeCell<bool>,
		_node: RawNode<'a, Self>
	}

	impl<'a> Node<'a> for GridNode<'a> {
		fn cmp(&'a self, other: &'a Self) -> Ordering {
			unsafe { *self.min_dist.get() + self.h }.cmp(&unsafe { *other.min_dist.get() + other.h })
			//unsafe { *self.min_dist.get() }.cmp(&unsafe { *other.min_dist.get() })
		}
		fn get_raw(&'a self) -> &RawNode<'a, Self> {
			&&self._node
		}
	}

	#[test]
	fn shortest_path() {
		let f = fs::read_to_string("resources/0083_matrix.txt").unwrap();
		let mut cols = None;
		let mut grid = Vec::new();
		for l in f.lines() {
			let a = grid.len();
			grid.extend(l.split(',').map(|t|GridNode{cost: t.parse().unwrap(), h: 0, min_dist: 0.into(), visited: false.into(), _node: Default::default()}));
			let c = grid.len() - a;
			cols.get_or_insert(c);
			assert_eq!(cols.unwrap(), c, "All rows must be the same length");
		}
		let cols = cols.unwrap_or_default();
		let rows = grid.len().checked_div(cols).unwrap_or_default();
		let min_cost = grid.iter().map(|n|n.cost).min();
		for (i, n) in grid.iter_mut().enumerate() {
			let (row, col) = i.div_rem_euclid(&cols);
			n.h = min_cost.unwrap()*(rows - row + cols - col - 1) as u64;
		}
		let mut frontier = FibHeap::new(&grid);
		let node = grid.first().unwrap();
		unsafe {
			*node.min_dist.get() = node.cost;
			frontier.push(node);
		}
		loop {
			let node = frontier.pop_min().unwrap();
			let i = unsafe { (node as *const GridNode<'_>).offset_from(grid.as_ptr()) } as usize;
			if i == grid.len() - 1 {
				break
			}
			let (row, col) = i.div_rem_euclid(&cols);
			unsafe { *node.visited.get() = true };
			for (dr, dc) in [(1, 0), (-1, 0), (0, 1), (0, -1)] {
				let r1 = (row as isize + dr).clamp(0, rows as isize - 1) as _;
				let c1 = (col as isize + dc).clamp(0, cols as isize - 1) as _;
				if (r1, c1) == (row, col) {
					continue
				}
				let n1 = &grid[r1*cols + c1];
				unsafe {
					if *n1.visited.get() {
						continue
					}
					let curr_dist = *n1.min_dist.get();
					let new_dist = *node.min_dist.get() + n1.cost;
					if curr_dist == 0 {
						*n1.min_dist.get() = new_dist;
						frontier.push(n1);
					} else if curr_dist > new_dist {
						*n1.min_dist.get() = new_dist;
						frontier.decrease_key(n1);
					}
				}
			}
		}
		let res = unsafe { *grid.last().unwrap().min_dist.get() };
		eprintln!("Min path sum: {res}");
		assert_eq!(res, 425185);
	}
}